PRIMITIVES

EXERCICE N°1:

I) Déterminer une primitive F de f sur I.

1)
$$f(x) = x^5 - 3x^4 + 5x - 2$$
 $I = IR$

2)
$$f(x) = \frac{3}{x^4} - \frac{5}{x^3} + 2x^3 - 8$$
 $I = IR^*$

3)
$$f(x) = -2\sin x + 3\cos(4x - 1) - 2\sin(5x)$$
 I = IR

4)
$$f(x) = 2\sqrt{x} - \frac{3}{\sqrt{x}} + 5x^3 - 9$$
 $I =]0,+\infty[$

II) Soit f définie sur IR par $f(x) = -3x^2 + 4x - 1/2$. Déterminer une primitive F de f sur IR tel que F(2) = -1.

EXERCICE N°2:

Déterminer une primitive F de f sur I.

1)
$$f(x) = 5x(x^2 - 4)^2$$
 $I = IR$
2) $f(x) = x^3(x^4 + 1)^3$ $I = IR$

2)
$$f(x) = x^3(x^4 + 1)^3$$
 $I = IR$

3)
$$f(x) = \frac{4}{(2x+6)^3}$$
 $I =]-3,+\infty[$

4)
$$f(x) = (x + 1)(x^2 + 2x - 8)^3$$
 $I = IR$

5)
$$f(x) = (3x - 1)^7 + \frac{x + 1}{(x^2 + 2x + 5)^3}$$
 I = IR

6)
$$f(x) = \frac{x^2}{\sqrt{x^3 + 1}}$$
 $I =]-1, +\infty[$

7)
$$f(x) = x\sqrt{3x^2 - 6}$$
 $I = [3, +\infty[$

EXERCICE N°3:

I) Soit la fonction f définie sur IR\{-1} par
$$f(x) = \frac{x^3 + x^2 - x}{(x+1)^2}$$

a- Déterminer les réels a, b et c tels que :
$$f(x) = ax + b + \frac{c}{(x+1)^2}$$

b- En déduire la primitive F de f sur]-3,+∞[qui s'annule en 1.

II) Montrer que
$$\forall x \in IR$$
, $F(x) = x^2 \sqrt{x^2 + 3}$ est une primitive sur IR de $f(x) = \frac{3x^3 + 6x}{\sqrt{x^2 + 3}}$

EXERCICE N°4:

Soit
$$f(x) = \frac{x}{\sqrt{x^2 + 1}} + 2x + 1$$
 définie sur IR.

- 1) Montrer que f admet au moins une primitive sur IR.
- 2) Déterminer une primitive F de f sur IR qui s'annule en 0.